
PB96-148572 Information is our business.

REAL-TIME LOGICS: COMPLEXITY AND
EXPRESSIVENESS

STANFORD UNIV., CA

15 MAR 90

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

lUiiS I KliiU I liMM D 1 .i 1 i CiVifc« I' A

Approved for public release;
Distribution Unlimited

19970409 016

BIBLIOGRAPHIC INFORMATION

PB96-148572

Report Nos: STAN-CS-90-1307

Title: Real-Time Logics: Complexity and Expressiveness.

Date: 15 Mar 90

Authors: R. Alur and T. A. Henzinger.

Performing Organization: Stanford Univ., CA. Dept. of Computer Science.

Sponsoring Organization: ^National Science Foundation, Washington, DC.*Defense
Advanced kesearcn Projects Agency, Arlington, VA.*Air Force Office of Scientific
Research, Boiling AFB, DC.

Contract Nos: NSF-CCR-8812595, DARPA-N00039-84-C-0211. AFOSR-88-0281. AFOSR-90-0057

NTIS Field/Group Codes: 62 (Computers, Control & Information Theory)

Price: PC A03/MF A01

Availability: Available from the National Technical Information Service, Springfield,
VA. 22161

Number of Pages: 36p

Keywords: *Real time "systems, *Time measurement, ^Mathematical logic. Time, Syntax,
Semantics, Complexity, Temporal logic, State sequences, TPTL(Timed propositional
temporay logic), MTL(Metric temporal logic).

Abstract: The theory of the natural numbers with linear order and monadic predicates
underlies propositional linear temporal logic. To study temporal logics for real-time
systems, the authors combine this classical theory of infinite state sequences with a
theory of time, via a monotonic function that maps every state to its time. The
resulting theory of timed state sequences is shown to be decidable, albeit
nonelementary, and its expressive power is characterized by omega-regular sets.
Several more expressive variants are proved to be highly undecicable. This framework
allows one to classify a wide variety of real-time logics according to their
complexity and expressiveness. In fact, it follows that most formalisms proposed in
the literature cannot be decided. The authors are, however, able to identify two
elementary real-time temporal logics as expressively complete fragments of the theory
of timed state sequences, and give tableau-based decision procedures. Consequently,
these two formalisms are well-suited for the specification and verification of
real-time systems.

March 1990 Report No. STAN-CS-90-1307

PB96-148572

Real-Time Logics: Complexity and Expressiveness

by

Rajeev Alur and Thomas A. Henzinger

Departments of Computer Science and Medicine

Stanford University

Stanford, California 94305

REPRODUCED BY: £01&
U.S. Department of Commerce

National Technical Information Service
Spnngfield, Virginia 22161

PB96-148572

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
form Approved
OMB No 0704-0188

1a REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

2b DECLASSIFICATION/DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

STAN - CS - %- |3o7

5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION

D6TT. Of COANWTER. SCONCE

6b OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

6c. ADDRESS {City, State, and ZIP Code)

STANHTRP MlVerRS?TY
STArOT&fcD / OK 9H2>c&

7b ADDRESS (City, State, and ZIP Code)

K|OX?2tf- 84 -C-olW

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION

DfWPfK

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code)

r\RuN6TW, VA 2220?

10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

11 TITLE (Include Security Classification)

KEM--T?AKE' LO6?CS: COMPLEXITY MOP e*pRessT\/Eis)ess
. —^v-°.

12 PERSONAL AUTHOR(S) t .. , _ „

13a TYPE OF REPORT 13b TIME COVERED
FROM TO

14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

16 SUPPLEMENTARY NOTATION

17 COSATI CODES

FIELD GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

19

Abstract The theory of the natural numbers with linear order and monadic predicates underlies
£ oSoJLar temporal logic. To study temporal logic, for real-time ^ ^^»
classical theory of infinite state sequences with a theory of Urne, via a monotomc function that map
tZLte "'us time. The resulting theory of *„nerf state sequences is *™^^^
nonelementary, and its expressive power is characterized by ^-regular sets. Several more express.ve

Var?h- SÄ S£^Ä-de variety of real-time logics according to their comply
and expr ssTveni In fact, it follows that most formalisms proposed in the literature cannot be
decided We are however, able to identify two elementary real-time temporal logics as expressively
comp ete fragments of the heory of timed state sequences, and give tableau-based decision procedure,
Co'sequently these two formalisms are well-suited for the specification and verification of real-time

systems.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

□ UNCLASSIFIED/UNLIMITED D SAME AS RPT D OTIC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL

 2oHKE WWNfr

21 ABSTRACT SECURITY CLASSIFICATION

22b TELEPHONE (Include Area Code)

(«IS) 723-22.13
22c OFFICE SYMBOL

DD Form 1473. JUN 86 Previous editions are obsolete

S/N 0102-LF-01A-6603

SECURITY CLASSIFICATION OF THIS »AGc

Real-time Logics:/
Complexity and Expressiveness1'2

Rajeev Alur Thomas A. Henzinger

Department of Computer Science
Stanford University

March 15, 1990

Abstract. The theory of the natural numbers with linear order
and monadic predicates underlies propositional linear temporal logic.
To study temporal logics for real-time systems, we combine this
classical theory of infinite state sequences with a theory of time,
via a monotonic function that maps every state to its time. The
resulting theory of timed state sequences is shown to be decidable,
albeit nonelementary, and its expressive power is characterized by
w-regular sets. Several more expressive variants are proved to be
highly undecidable.

This framework allows us to classify a wide variety of real-time
logics according to their complexity and expressiveness. In fact, it
follows that most formalisms proposed in the literature cannot be
decided. We are, however, able to identify two elementary real-time
temporal logics as expressively complete fragments of the theory of
timed state sequences, and give tableau-based decision procedures.
Consequently, these two formalisms are well-suited for the specifica-
tion and verification of real-time systems.

1 Introduction
Linear propositional temporal logic (PTL) has been demonstrated to be a work-
ing tool for the specification and verification of reactive systems ([Pn77], [OL82],
[LP84], [MP89]). Its practical appeal stems from the strong theoretical connec-
tions that PTL, which is interpreted over infinite sequences of states, enjoys with
the underlying classical first-order theory of the natural numbers with linear
order and monadic predicates: PTL captures an elementary, yet expressively

lThi« research was supported in part by an IBM graduate fellowship to the second author,
by the National Science Foundation under grant CCR-8812595, by the Defense Advanced
Research Projects Agency under contract N00039-84-C-0211, and by the United States Air
Force Office of Scientific Research under contracts 88-0281 and 90-0057.

2 An abbreviated version of this paper appears in the proceedings of the 5th Annual IEEE
Symposium on Logic tn Computer Science (1990).

PROTECTED UNDER INTERNATIONAL COPYRIGHT
ALL RIGHTS RESERVED.
NATIONAL TECHNICAL INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE

complete, fragment of this nonelementary theory ([SC85], [GPSS80], [St74]);
that is, any property of state sequences expressible in the monadic first-order
theory of (N, <) can also be specified in PTL, which has a much simpler decision
problem.

PTL admits, however, only the specification of qualitative time requirements,
such as an event occurring "eventually." To enable quantitative reasoning about
the timing delays in real-time applications, real-time logics include explicit time
references and are interpreted over timed state sequences, which associate a
time with every state ([JM86], [Os87], [Ha88], [AH89], [Ko89], [HLP90]). Even
though the suitability as specification language has often been demonstrated,
most of these previous attempts remain ad hoc, with little regard to complexity
and expressiveness questions.

The prime objective of this paper is to develop a unifying framework for
the study of real-time logics. In analogy to the untimed case, we identify the
underlying classical theory of timed state sequences, show it to be nonelemen-
tarily decidable, and use its complexity and expressiveness as point of reference.
We are able to define two orthogonal extensions of PTL that inherit its appeal:
they capture elementary, yet expressively complete, fragments of the theory of
timed state sequences, and thus are excellent candidates for practical real-time
specification languages.

Outline

In Section 2, we define the theory of timed state sequences by combining a
theory of state sequences with a theory of time, via a unary monotonic function
that maps every state to its time. As for PTL, the monadic first-order theory
of (N, <) serves as the theory of states. To model time, we choose the theory
of (N> <> =)• We show that the resulting combined theory is still decidable, and
characterize its expressiveness by o»-regular sets.

We claim that this theory of timed state sequences is indeed the theory for
reasoning about finite-state real-time systems. All conceivable extensions and
variations, like additional primitives over time (such as addition), or a dense
time domain, result in highly undecidable (Hj-hard) theories. It follows from
our results that none of the real-time logics proposed by [JM86], [Os87], [Ha88],
and [Ko89] can be decided, which vividly demonstrates that it has not been
understood, so far, how expressive a theory of time may be added, without
sacrificing decidability, to reasoning about state sequences.

In [AH89], we proposed timed PTL (TPTL) as a natural specification lan-
guage, and developed a tableau-based decision procedure. It turns out that
TPTL captures precisely the fragment of the theory of timed state sequences
obtained by combining PTL (the temporal fragment of the states component)
with the quantifier-free fragment of the time component. We argued, in [AH89],
that it is this restriction of disallowing quantification over time, what yields read-
able specifications as well as finite-state-based verification methods. In Section

3 we show it to be both harmless, by proving the expressive completeness of
TPTL with respect to the underlying classical theory, and essential, by prov-
ing the nonelementary nature of TPTL extended by quantification over time
variables.

There are, in fact, second-order versions of all our theorems: the second-
order theory of timed state sequences is still decidable, and just as PTL is
generalizable to ETL ([Wo83]), TPTL can be extended to be as expressive as
this second-order theory, at no cost in complexity.

Surprisingly, the addition of past operators renders TPTL nonelementary.
This induces us to introduce, in Section 4, another expressively complete frag-
ment of the theory of timed state sequences, MTL, which includes past oper-
ators, but restricts the states that may be related by timing constraints. We
present a tableau-based decision procedure for MTL, thus demonstrating its
applicability for the verification of real-time systems.

Both TPTL and MTL are", while being elementary, still quite expensive; the
respective decision procedures work in doubly exponential time. In Section 5 we
show that this cost is, however, intrinsic to real-time reasoning: any reasonably
succinct and reasonably expressive extension of PTL is necessarily EXPSPACE-
hard. Even the special case of identifying next-time with next-state, which
restricts us to reasoning about synchronous systems, is not cheaper.

2 The Theory of Timed State Sequences

Real-time logics are interpreted over timed state sequences. Given a finite set
of propositions P and a time domain TIME, a timed state sequence p = (a, r)
is a pair consisting of an infinite sequence a of states o-{ C P, i > 0, and a
map T:N-* TIME that associates a time with every state. We introduce the
classical theory of timed state sequences, show its decidability, and characterize
its expressiveness by w-regular sets.

2.1 The classical theory of state sequences

First, we recapitulate briefly why the theory of the natural numbers with lin-
ear order and monadic predicates underlies linear-time propositional temporal
logics, which are interpreted over infinite sequences of states.

Let C2 be the second-order language with unary predicate symbols and the
binary predicate symbol <, and let £ be its first-order fragment. We interpret
C? over the natural numbers, with < being interpreted as the usual linear order.
Throughout we consider only formulas that contain no free individual variables.
Thus, given a formula <j> of £2 with the free predicate symbols Pi,...pn, an
interpretation / for <fi specifies the sets p^.-.p^ C N. Such an interpretation
can be viewed as an infinite sequence a of states Oi C {pi,...p„},i > 0 (let

Pk € n iff i € p[). By .M(<6) we denote the set of state sequences that satisfy

Observe that £2 is essentially the language underlying the theory SIS, the
second-order theory of the natural numbers with successor and monadic pred-
icates. This is because, in SIS, the order predicate < can be defined from the
successor function using second-order quantification (and vice versa). It was
first shown by Büchi that the theory SIS is decidable ([BÜ62]).

Formulas of the proposition^ linear temporal logic PTL can be faithfully
translated into £, by replacing propositions with monadic predicates. For exam-
ple, the typical response property that "Every estate is followed by a «-state »
is expressed in PTL as '

It can be written in £ as

Vz.(p(i) _ 3j>i.q(j)), ^R)

without changing the set of models.

Although PTL corresponds to a proper subset of £, it has the full expres-
sive power of £ ([Ka68], [GPSS80]); that is, for every £-formula there is a
FTL-formula specifying the same property of state sequences. Furthermore the
validity problem for £ is nonelementary ([St74]), whereas PTL is only PSPACE-
complete ([SC85]), and has a singly exponential decision procedure ([BMP81])

To attain the greater expressive power of £2, PTL may be strengthened
by adding operators that correspond to right-linear grammars ([Wo83]) The
resulting logic, extended temporal logic (ETL), has the expressive power of £2,
and like PTL, still a singly exponential decision procedure.

f rM
Ti£ eS£!ST" °f £2 CaD *° be charact«i*ed by u,-regular expressions

([Mc66], [Th81]): for any formula tf of £2, the set M(<j>) can be defined by an
u>-regular expression over the alphabet *>({ftf.. .Pn}). For example, MUR) is
described by the expression

[{?.?}+{?} + {} + ({?}; true'; ({p,q} + {q}))]u.

The restricted expressive power of £ corresponds to the star-free fragment of
w-regular expressions (in which the Kleene star may be applied only to the
expression true).

2.2 Adding time to state sequences

To obtain a theory of tuned state sequences, we need to identify a suitable
time domain TIME, with appropriate primitives, and couple the theory of state
sequences with this theory of time through a unary ("time") function / which
associates a time with every state. We choose, as the theory of time, the theory
of the natural numbers (i.e., TIME = N) with linear-order and congruence

primitives. Since the time cannot decrease from one state to the next, we
require that / be monotonic. We will have an opportunity to justify these
decisions later.

Let Cj be a second-order language with two sorts, namely a state sort and
a time sort. The vocabulary of Cj. consists of unary predicate symbols and
the binary predicate symbol < over the state sort, the unary function symbol
/ from the state sort into the time sort, and the binary predicate symbols <,
=2, =3,... over the time sort. By C? we denote the first-order fragment of C\..

We restrict our attention to structures that choose the set of natural num-
bers l\l as domain for both sorts, and interpret the primitives in the intended
way. Thus, given a formula 4> of £y with the free predicate symbols px,... pn, an
interpretation I for <f> specifies the sets p{,.. .p£ C N and a monotonic function
/ : N —► TIME. The satisfaction relation is defined as usual. Every interpre-
tation I for 4> can be viewed as a timed state sequence (IT, r) (choose a as in
the untimed case, and let T = /); by M.T{4>)

W
« denote the set of timed state

sequences that satisfy <j>.
It follows that £y-formulas specify properties of timed state sequences. For

example, the requirement of bounded response time that "Every p-state is fol-
lowed by a g-state within time 1," can be written as a formula of £y:

Vt. (p(i) - 3j > t. (q(j) A f(j) < f(i) + 1)) (<f>BR)

(note that the successor functions, over either sort, are definable in Cj).
An £j-formula 4> is satisfiable (valid) iff it is satisfied by some (every) timed

state sequence. The (second-order) theory of timed state sequences is the set of
all valid sentences of C\,. We prove it to be decidable.

2.3 Decidability and expressibility

First we show that, given an interpretation I for an £j.-formula 4>, the informa-
tion in / essential for determining the truth of <j> has finite-state character.

Let us consider the sample formula 4>BR again. A timed state sequence for
4>BR specifies, for every state, the truth values of the predicates p and q, and
the value of the time function. Since / is interpreted as a monotonic function,
it can be viewed as a state variable ft recording, in every state, the increase in
time from the previous state. Although f6 ranges over the infinite domain N,
observe that if the time increases by more than 1 from a state to its successor,
then the actual value of the increase is of no relevance to the truth of <J>BR-

Consequently, to determine the truth of 4>BR, the state variable fs can be
modeled using a finite number of unary time-difference predicates. We employ
the three new predicates Tdiff0, Tdiff lt and Tdiff2 in the following way. Tdiff0

is true of a state iff the time increase from the previous state is 0, Tdiffl is true
iff it is 1, and Tdiff2 is true iff it is greater than 1. Accordingly, we define
the notion of an extended state sequence for <J>BR, as a state sequence over the

propositions p, g, Tdiff 0, Tdiff\, and Tdiff2 such that precisely one of the
propositions Tdiff0, Tdiff u and Tdiff 2 is true in any state.

Given an extended state sequence, we can recover a corresponding timed
state sequence: the value of the time function in a Tdiff t-sUte is obtained by
adding t to its value in the previous state (if Tdifft holds in the first state, let t
be its time). This establishes a many-to-one correspondence between the timed
and the extended state sequences for <J>BR\ it induces an equivalence relation
on the set of all interpretations for <j>BR such that the truth of <pBR is invariant
within any equivalence class. Every equivalence class is, furthermore, definable
by a finite number of propositions.

For formulas with congruence primitives, we need to introduce, apart from
time-difference predicates, also unary time-congruence predicates, to keep track
of the congruence class of the time value of every state. For example, consider
the following formula ij>, which states that "pis true in every state with an even
time value":

Vi. (/(,•) =2 0 - p(i)).

Given an interpretation I for V, the information in f1 can be captured by the
two predicates Tcong0 and Tcong^. Tcong0 is true for states with even time,
and Tcong1 is true for states with odd time.

Now we formalize this idea. Let c{4>) be the least common multiple of the
set {c | =c occurs in <t>}, and d{4>) the product of c((f>) and 4Q, where Q is
the number of time quantifiers (i.e., quantifiers over variables of the time sort)
occurring in <j>.

Given a formula 4> of L\ with the free predicate symbols pi,.. .p„, an ex-
tended state sequence J for <f> specifies the sets p{,...pJ

n C N, a partition of
N into the sets Tdiff30,... Tdiff Jd(4>), and another partition of N into the sets

Tcong0>... Tcongc^_v For any interpretation I for <f>, the extended state
sequence J underlying I is defined as follows:

• J agrees with J on px,.. .p„.

• For i > 0 and 0 < * < d{4>), i € Tdiff{ iff /7(i) = f\i - 1) + f.

• For i > 0, t € Tdiffiw iff /7(i) > /7(i - 1) + d{<j>).

• For i > 0 and 0 < t < c{4>), i 6 TcongJ
t ifF f\i) =e{<t>) t.

(Throughout we use the convention that, for any interpretation J, /;(-l) = 0.)

Lemma [Finite-state character of time]. Given a formula <p of L\
and two interpretations I and J for 4> with the same underlying extended state
sequence, I £ MT(4>) iff J € MT{4>). ■

Proof: Consider two interpretations J and J for the £^-formula <f> that
have the same underlying extended state sequence; that is, I and J agree on
the free predicate symbols of <j>, and for each i > 0, f'{i) and f}(i) belong to

the same congruence class modulo c(<f>), and either /J(i) - f!(i - 1) is the same
as fJ(i) - fJ(i - 1), or both are at least d(4>).

We use induction on the structure of cp to prove our claim. To handle sub-
formulas with free variables properly, we need to strengthen our assumptions
about the equivalence of interpretations with respect to a formula.

Let ip be a subformula of <j>, possibly with free variables. Let d(ip) be the
product of c(<p) and 4^, where Q is the number of time variables bound in ip.
For ease of presentation, we represent the function / by the countable set of
variables {f{ \i > 0}: for any interpretation 7, let f[= fT(i). By Tvar(ip) we
denote the union of the set of free time variables of ip with {fi : i > 0}. We
say that two interpretations 7' and J' for ip are equivalent with respect to ip iff
they satisfy the following conditions:

• For every predicate symbol g free in ip, q1' = qJ'.

• For every state variable z free in ip, i1 = iJ ■

• For all 1,2/ G Tvar(ip), x1' < y1' iff x1' < y1'.

• For every x, y € Tvar(ip), if 0 < x1' - y1' < d(ip), then
i' i' i' i' i z — y = x1 —y, and vice versa.

• For every x € Tvar(ip), x1 =c

Clearly, the given two interpretations I and J are equivalent with respect to
the given formula 4>. Thus, it suffices to show that, for any subformula tp of <f>
and equivalent interpretations I' and J' for ip, I' \= i> implies J' (= %j). We do
so by induction on the structure of <f>.

The interpretations I' and J' agree on the assignment to predicate symbols
and state variables of ip. They may assign different values to the elements in
Tvar(ip), but they agree on their ordering and modulo-c(^) congruence classes.
Clearly, if V> is an atomic formula, then I' ^ V> iff J' £= ij>.

The case of boolean connectives is straightforward.
Suppose that i> is of the form 3p. ip', for a predicate symbol p, and that

V (= ip. Let I" be an extension of I' such that 7" \= ip'. From the inductive
hypothesis, the extension of J' that assigns the set p7" to p is a model of rp'.
Hence, J' \= ip. The case that ip is of the form Vp. ip' is similar.

If the outermost operator of ip is a quantifier for a state variable, then we
can proceed as in the previous case.

Now consider the case that V is of the form 3x.y>', for a time variable
i. Suppose that V \= ip. Let 7" be an extension of V such that 7" \= i/>'.
First note that d(ip') = c(<p) ■ 4Q_1. We extend J' to an interpretation J" for
ip' in the following way: if for some y £ Tvar(ip), |t/' - x1" \ < d(ip'), then
choose xJ" to be y7' +'i7" - y1'. Otherwise, let yi,y2 € Tvar(ip) be such that
y{' < x1" < y£. Note that y£ - y[' is at least d(rp), and hence, so is y£ - y('.
We choose a;-7 between y{ and y/ at a distance at least d(ip') from either of

them. Furthermore, since the difference between d(ij>) and 2d(ijj') is at least
c(4>), we can require the modulo-c(^) congruence class of xJ" to be the same
as that of x1 . Now /" and J" satisfy the requirements listed above. Using
the inductive hypothesis, J" (= V', and hence, J' j= ip. The case of universal
quantification is similar. ■

It follows that the extended state sequence underlying a given interpreta-
tion for a ££-formula <j> has enough information for deciding the truth of <f>.
Consequently, every formula 4> can be viewed as characterizing a set M'T(4>) of
satisfying extended state sequences, instead of a set of satisfying timed state se-
quences. Our next task is to show that this set is w-regular. This is achieved by
constructing a formula in the language £2 that is satisfied by the same extended
state sequences.

For instance, the extended state sequences that satisfy <j>BR are the same as
the models of the following formula:

Vi. p(i) — 3j > z.

/ / Vi. (i < i < j - Tdiff0{k)) V \

9Ü) A

\

i< k < j A Tdiff^k) A

v ' v v*'**-(wtf0(*'J)"*; j))

\

Theorem [Regular nature of the time primitives]. Given a formula 4>
of CT, there exists a formula ip of C2, with additional time-difference predicates
Tdiff0, ■■■Tdiffd^ and time-congruence predicates Tcong0, ... Tconffc/^_1(

such that M'T{(j>) = M(i/>). Furthermore, if <f> € CT then ijj € C. m

Proof: Given an £|.-foimula if), we construct an equivalent (with respect to
extended state sequences) £2-formula %/> in four steps.

First, we eliminate all time quantifiers. Let I be an interpretation for <f>, and
t = d(4>)+c(<f>). We can easily find an interpretation J with the same underlying
extended state sequence, such that fJ(i) < fJ(i - 1) +1 for all i > 0. By the
previous lemma, we know furthermore that J (= <j> iff I f= <f>. Based on this
observation we perform the following transformation: a subformula 3y.i>(y),
where y is a time variable, is replaced by the disjunction

t t

VlWO V 3iy. V*(/W+i),
t=0 fc=0

for a new state variable iy. Let <j>' be the formula obtained from (/> by applying
the above transformation repeatedly until there are no time quantifiers left-
clearly M}.(<£) = M'T (4?).

The second step, resulting in <f>", models the primitive time arithmetic of
comparisons and addition by constants by the time-difference predicates. For
instance, consider the subformula f(i) + 1 < f(j), for state variables i and j.
Intuitively, for f(i) to be less than f(j) in any interpretation, state i has to

precede state j, and the time increase from the previous state has to be positive
for some intermediate state. Hence, we replace the subformula by

(t < j) A 3k.{i<k<j A -.Tdijf „(*))■

Similarly, f(i) < f(j) and f(i) < f{j) + 1 can be replaced by

V*.(j < k<i - Tdiff0(k)) (4>0)

and

4>o v 3Jfc. [j < k < i A Tdiff^k) A Vib' ^ Jb. {j < k' < i — Tdiff0{k'))},

respectively. The generalization to subformulas of the form f(i) + c < f(j) and
f(i) < f(j) + c, for arbitrary c > 1, is straightforward.

In a third step, we model the congruence primitives of 4>" with the help of the
time-congruence predicates. Consider a subformula of the form f(i) + c =d f(j).
Since there is only a finite number of modulo-c(^) congruence classes to which
f(i) and f(j) can belong, we can use a case analysis to express this relationship.
We replace the subformula by

d c(4>)/d c(4>)/d

f\(\J Tcong{k+dk-)modcW{i) ~ V Tcong{k+c+dk,)modc{<t>){j)).
Jt=i t'=i fc'=i

Subformulas of the form f(i) =<j c can be handled similarly.
Let <f>'" be the formula resulting from eliminating all time primitives in the

described way. The desired £2-formula X/J is obtained by adding, to 4>'", the
following conjuncts:

• For every state i > 0, precisely one of the time-difference predicates
Tdiff0,... TdiffdW is true.

• For every state i > 0, exactly one of the time-congruence predicates
Tcong0,... Tcong^y^ is true.

• For all i > 0, the congruence classes of i and i + 1, and the time jump
f(i + 1) — f(i) are related in a consistent fashion:

Vi
d(A"le(*A_7 Tdlffk{l+l) A Tcon^-W - \

/=0 fcOo ^ rCOnff(k'+fc)m0dc(*)(*+l) J.

The above theorem, combined with the earlier stated facts about £2, gives
the following important results regarding the decidability and expressiveness of
the theory of timed state sequences.

Corollary [Decidability]. The validity problem for the language C\ is
decidable. m

Clearly, the validity problem is nonelementary even for the first-order lan-
guage £T, as £ is a fragment of CT (recall that £ was shown to be nonelementary
in [St74]).

Corollary [Expressiveness]. Given a formula <j> of C\, with the free pred-
icate symbols Pi,..-pn, the set M'T{4>) can be characterized by an u-regular
expression over the alphabet

V{{Pi, ■ ■ ■ Pn» x { Tdiff0,... Tdiffd{4>)} x { Tcong0,... Tcong^y,}

. Furthermore, if <p € CT then M'T{4>) can be defined by a star-free u-regular

expression. ■

2.4 Undecidable extensions and variants

Now we justify our choice of (N, <,=) as the theory of time, by showing that
several formalisms for real-time reasoning with an expressive power greater than
that of C\ are highly undecidable. In [AH89], we proved the IlJ-completeness of
certain syntactic and semantic variants of the real-time temporal logic TPTL.
Here, these results are refined, extended, and presented in the framework of the
theory of timed state sequences.

Theorem [Undecidable theories of real time]. The following two-sorted
first-order theories are YL\-complete:

state theory time theory time function
(from states to time)

1 (N,<) (N,+l) /
2 (N,<) with

monadic predicates
(N.-2) identity /

3 (N,<) with
monadic predicates

dense linear order (D,^)
with "successor" S:

x -< S(x)
x<y-* S(x) -< S(y)

strictly monotonic /

4 (N,<) with
monadic predicates

(N,+l) identity / and
strictly monotonic /'

Proof: First, we observe that the satisfiability of a formula <f> can, in all
cases, be phrased as a Ej-sentence, asserting the existence of a model for <p. For
instance, in Case 2, an interpretation I for <f> may be encoded, in first-order arith-
metic, by finitely many sets of natural numbers; say, one for each unary predicate
p in <t>, characterizing the states for which p holds. It is routine to express, as a
first-order formula, that <j> holds in I. In Case 3, the Löwenheim-Skolem theorem

10

ensures the existence of countable models, and again, elementary arithmetic can
be used to encode (and decode) such models. Thus satisfiability problem is in
£j in each case.

Now let us prove Sj-hardness. The problem of deciding whether a nonde-
terministic Turing machine has, over the empty tape, a computation in which
the start state is visited infinitely often, is known to be Ej-complete ([HPS83]).
For ease of encoding, we prove our results using 2-counter machines instead of
Turing machines.

A nondeterministic 2-counter machine M consists of two counters C and D,
and a sequence of n instructions, each of which may increment or decrement
one of the counters, or jump, conditionally upon one of the counters being zero.
After the execution of a non-jump instruction, M proceeds nondeterministically
to one of two specified instructions.

We represent the configurations of M by triples {l,c, d), where 0 < I < n,
c > 0, and d > 0 are the current values of the location counter and the two
counters C and D, respectively. The consecution relation on configurations
is defined in the obvious way. A computation of M is an infinite sequence
of related configurations, starting with the initial configuration (0,0,0). It is
called recurring iff it contains infinitely many configurations with the value of
the location counter being 0.

The problem of deciding whether a given nondeterministic 2-counter ma-
chine has a recurring computation, is Ej-hard ([AH89]). Thus, to show that
the satisfiability problem of a language is Ej-hard, it suffices, given a nonde-
terministic 2-counter machine M, to construct a formula <J>M such that 4>M is
satisfiable iff M has a recurring computation.

Ej-hardness of Case 1: We show that the monotonicity constraint on time
is necessary for the decidability of £j-; otherwise, the time map can be used to
encode (and decode) computations of M. We write a formula <f>M all of whose
models correspond to recurring computations of M. A computation T of M is
encoded by the interpretation I iff, for all i > 0, /7(3t) = /, /7(3i + 1) = n + c,
and fI(3i+2) = n + d for the i-th configuration (I, c, d) of T.

First, specify the initial configuration, by

/(0) = 0A/(l) = nA/(2) = n. (*. IN IT)

Then ensure proper consecution by adding a conjunct <f>i for every instruction
0 < / < n of M. For instance, the instruction 1 that increments the counter C
and proceeds, nondeterministically, to either instruction 2 or 3, contributes the
conjunct

Vi.
(/(* -+- 3) = 2 V /(i + 3) = 3) A

/(i + 5) = /(i + 2)

11

(*i)

The recurrence condition can be expressed by the formula

Vi. 3j > i. f(j) = 0. {4>RBCUR)

Clearly, the conjunction 4>M of these n + 2 formulas is satisfiable iff M has a
recurring computation.

Note that <j>M uses only the successor primitive over time, and no unary
predicates. Case 1 follows.

Ej-hardness of Case 2: We show that a certain extremely modest relaxation
of the timing constraints admitted in £j, namely allowing the primitive of
multiplication by 2 over the time domain, leads to Ej-hardness. This result
holds even under the restriction that the time function / is the identity function;
that is, "time" acts merely as a state counter.

To encode computations of M, we use the unary predicates Pi,...pn, rlt

and r2. We require that at most one of these predicates is true of any state;
hence we may identify states with predicate symbols. The configuration {/, c,d)
of M is represented by the finite sequence of states that starts with a prstate,
and contains precisely c restates and d r2-states.

The initial configuration as well as the recurrence condition can be expressed
easily. The crucial property that allows a language to specify the consecution
relation of configurations, and thus the set of computations of M, is the ability
to copy an arbitrary number of r-states. With the availability of multiplication
by 2, we are able to have the i-th configuration of a computation correspond,
for all i > 0, to the finite sequence of states that is mapped to the time interval
[2*,2,+1). Then we can copy groups of r-states by establishing a one-to-one
correspondence of r-states at time i and time 2t; clearly there are enough gaps to
accommodate an additional r-state when required by an increment instruction.

For instance, the instruction 1 that increments the counter C and proceeds,
nondeterministically, to either instruction 2 or 3, can be expressed as follows:

Vi.

/ 3j.[f(j) = 2f(i) A(p2(j)Vp3(i))] A

Pl(0

Vj.

3j.

V;.

Vj.

\
/(0 < fU) < 2/(0 A n(j) -
3k.(f(k) = 2f(j) An(Jb))
2/(0 < j < 4/(i) Ar!(j)A
V*.(2/(t) = /(j) - -nr^tJjA

2/(0 < J" < 4/(0 A Mj')
34.(2/(4) = /(j') Ar,(i))

/(0 < f(j) < 2/(0 A r2(j) ^ '
3k.(f(k) = 2f(j) Ar2(4))
2/(0 < f{j) < 4/(0 A r2(j) S

[34. (2/(4) =/(j) Arj(i))

Vj" * j.
A

/J
The consequent of the implication ensures that, given the configuration of M
that is encoded by the states with times in the interval h ■ [/(i),2/(0), the
states with times in I2: [2/(0,4/(0) encode the configuration that results from

12

executing instruction 1. The first conjunct updates the location counter. The
second conjunct requires J2 to contain at least as many restates as 7i; together
with the third conjunct it assures that J2 has precisely one rj-state more than
I\. The last two conjuncts together state that the number of restates in 72 is
the same as in 1\.

Ei-hardness of Case 3: Now we attempt to model time over a dense domain
TIME — D; that is, between any two given time points there is another time
point. We show that even the simple arithmetic of linear order (<) and addition
by a constant (S) leads to a highly undecidable theory. Examples for (D, ^, S)
are the rational numbers (Q, <, +1), and the reals.

As in the previous case, we employ the predicates pi,...pni TI, and r2: a
configuration {l,c, d) of M is encoded by the state sequence Pi^r*. The proof
depends, once more, on the ability to copy groups of r-states. This time, we
are able to have the i-th configuration of a computation of M correspond, for
all i > 0, to the finite sequence of states that is mapped to the time interval
[5'(0),S,+1(0)), for some arbitrary element 0 £ D, because the denseness of
the domain allows us to squeeze arbitrarily many states into any non-empty
interval.

Since every state has a unique time, and we can establish a one-to-one cor-
respondence of Tj-states (j = 1,2) at time t and time S(t); the formula defining
the recurring computations of M can be obtained from the formula constructed
in Case 2, simply by replacing the operation -2 by S.

Ej-hardness of Case 4: This case corresponds to having two time bases, /
and /', that are updated, from one state to the next, independently of each
other. The result holds already for the special case in which / is the identity
function, and /' is strictly increasing.

The encoding of M-computations is very similar to the one used in Case
2; the i-th configuration of M corresponds to the sequence of 2* states in the
interval [2*,2,+1). The assertion language does not include the primitive of
multiplication by 2, which can, however, be simulated with the help of the second
time function /'. We restrict ourselves to interpretations in which f'(i) = 2i for
all i > 0. This condition is enforced by the conjunct

/'(0) = 0AVi.(/'(t+l) = /'(i) + 2).

By replacing, in the formula constructed in Case 2, every term of the form 2/(i)
by /'(i), we obtain again a formula encoding the recurring computations of M.
m

Let us consider the implications of these results on developing logics for
real-time systems, which justify our decisions in the choice of L\,.

The fact that the monotonicity constraint on the time function is required for
decidability (Case 1) has little consequences in the context of real-time logics,
since we are interested only in monotonic time functions anyway.

13

When designing a real-time logic we need to select an appropriate domain for
modeling time. Ideally, for asynchronous systems, where changes in the global
state of the system can be arbitrarily close in time, we would like to choose
a dense linear order. Since the ordering predicate and addition by constant
time values are the basic primitives needed to express the simplest of timing
constraints, the undecidability of the resulting theory (Case 3) is a major stum-
bling block in the design of useful logics over dense time. For example, the
real-time (branching-time) logics considered in [AD90] and [Le90] use the set of
real numbers to model time, and hence are undecidable.

Having constrained ourselves to a discrete time domain, we need to choose
the operations on time admitted in the logic. While previous works have used
addition as one of the primitives, the above theorem (Case 2) shows that it
introduces undecidability. Using our results and techniques, we can show the
undecidability (in fact, II{-hardness) of various real-time logics proposed earlier,
such as [JM86], [Os87], [Ha88], and [Ko89], all of which include addition. In
[HLP90], decidability is proved for a real-time logic with addition; this logic
puts, however, substantial restrictions on the use of time quantifiers.

The real-time logic RTL ([JM86]) can be viewed as a two-sorted logic with
multiple monotonic functions from the state sort to the time sort. Our result
(Case 4) implies that RTL is undecidable, even if we restrict its syntax to allow
only the successor primitive over time (RTL allows addition over time).

On the other hand, we have shown that the congruence primitives over time
can be added to the language without sacrificing decidability. Furthermore, we
have proved decidabilty for the second-order case as well. Thus we claim that
the first-order theory of (N,<) with monadic predicates (for state sequences)
combined with the theory of (N,<,=) (for time) is the theory of timed state
sequences.

3 Timed Temporal Logic: TPTL

In [AH89], we introduced an extension of PTL that is interpreted over timed
state sequences. We developed a tableau-based decision procedure and model-
checking algorithm for this timed proposition^ temporal logic (TPTL), thus
demonstrating its suitability for the verification and synthesis of real-time sys-
tems.

In this section, we study the expressiveness of TPTL. We compare the
properties of timed state sequences expressible in TPTL with those expressible
in the underlying classical language CT. TPTL is shown to correspond to an
expressively complete fragment of CT; that is, the set of models of any CT-
formula can be characterized by a TPTL-formula. This result is important as
it establishes TPTL as a sufficiently expressive specification language; it shows
that the gains in complexity in moving from the full first-order theory of timed
state sequences (nonelementary) to TPTL (doubly exponential) are not achieved

14

at the cost of expressive power.
We also look at two natural extensions of TPTL that correspond to larger

fragments of CT and, therefore, are still decidable. However, both general-
izations turn out to be nonelementary, thus affirming our choice of TPTL as
verification formalism. TPTL can, on the other hand, be generalized to attain
the full expressiveness of the second-order language £|, at no cost in complexity.

3.1 Syntax and semantics

We briefly recall the definition of TPTL. This real-time temporal logic is ob-
tained from PTL by adding a time quantifier "x." that binds the associated
variable x to the "current" time: x. 4>{x) holds at state CT, of the timed state
sequence (a,r) iff <t>(r(i)) does. For example, in the formula Ox.<f>, the time
reference x is bound to the time of the state at which <j> is "eventually" true.

This extension of PTL with references to the times of states admits the
addition of timing constraints; that is, atomic formulas that relate the times
of different states. The formulas of TPTL are built from propositions and
timing constraints by connectives, temporal operators, and time quantifiers. For
instance, the typical bounded response property that "Every p-state is followed
by a g-state within time 1" can be stated as

□i.(p - Oy.(q A y<x+l)). (4>BR)

Let us be more precise. Given a set P of proposition symbols and a set V
of variables, the terms TT and formulas <j> of TPTL are inductively defined as
follows:

• 7T := X | C | I + c

• 4> ■■= P I *i < *2 | *i =d T2 | false | 0i — 4>2 I 04> I 4>i U fa I X. (f>

for x € V, p € P, c > 0, and d > 2.3 Additional temporal operators such as O
(eventually) and G (always) are defined in terms of O (next) and U (until) as
usual.

The formulas of TPTL are interpreted over timed state sequences.4 The
timed state sequence p = (c, r) satisfies 4> iff (p, 0) \=£Q $ for the initial envi-
ronment £0: V — {r(0)}, where the truth predicate \= is inductively defined as
follows:

3 TPTL as originally defined in [AH89] differ« lyntactically in that the time quantifier» are
coupled with the temporal opearaton. Observe that thi» coupling does not restrict us in any
essential way: by separating the time quantifier "i." from the temporal operators, we admit
more formulas (such as D(z.tf — x. «/>)), for each of which there is, however, an equivalent
formula in which every quantifier follows a temporal operator (Di. (4> —. V)).

4In [AH89], timed state sequences are required to satisfy the two additional conditions of
mtUality (x = 0) and progress (Dx.Oy.y > *). These requirements make sense for any real-
time specification language, but we have just demonstrated that they are expressible within
TPTL itself.

15

• (P> i) \=£ P iff P € Oi

• (P.*) Nf *i < (=c) *2 iff £(*i) < (=d) £(ir2),
for £(x + c) = £(x) 4- c and f (c) = c

• (P. *) ^5 false

• (P> *) t=f 0i -* 02 iff (p, 0 t=£ 0i implies (p, i) (=^ <£2

• (P>*)l=5 O0iff (P,i+1) Nf0

• (p,i) |=£ 4>\U(f>2 iff (p,j) f=£ 02 for some j > i, and
(p, A) f=£ 4>i for all i < A < j

• (P.*) \=£ M iff (P,*) Nf[r(i)/I] 0-

(Here £[2/x] denotes the environment that agrees with £: V —* TIME on all
variables except x, which is mapped to t £ TIME.) Note that every TPTL-
formula is equivalent to its closure, in which all free variables are bound by a
prefix of time quantifiers.

Every TPTL-formula <f> can be translated into CT, while preserving the set
of models Mrfa- For every proposition p of TPTL, we have a corresponding
unary state predicate p(i) of CT- A closed TPTL-formula 4> is true over a timed
state sequence p iff the ^-formula JFb(0) is true over p, where JF\ (for i > 0) is
inductively defined as follows:

• Fi{p)=p{i)

• Fifa < T2) = *i < 7r2, Fi(T! =d x2) = irx =d r2

• J-(false) = false, Fifa - fa) = Fifa) - F<(*2)

• ^.(00) = Fi+lfa

• FifaUfc) = 3j > i. {Fjfa) A Vt < k < j. Fkfa))

. Fi(z.4>) = Fifa[f(tyz].

(We write 4>{f(i)/x] for the formula that is obtained from <f> by replacing all free
occurrences of x by f(i).)

For example, the bounded response property 4>BR is equivalent to its trans-
lation F0{4>BR)-

Vt > 0. (p(i) - 3j > i. (q(j) A f(j) < f(i) + 1)).

Note that the mapping Fo embeds TPTL into CT; its range constitutes a
proper subset of all well-formed £j-formulas. Thus, just as PTL corresponds
to a subset of £, we may view TPTL as a fragment of £T: quantification over
the state sort is restricted to the "temporal" way of PTL, while quantification
over the time sort is prohibited entirely.

16

3.2 Expressiveness

In [AH89] we have shown that, in a pleasing analogy to PTL versus £, TPTL
constitutes in fact an elementary fragment of C-r: the satisfiability of a given
TPTL-formula with N logical and temporal connectives, and K as the product
of its constants, can be decided in time 2°^N'K\ To complete this analogy, we
show here that the restrictions imposed by TPTL on the quantification in Cj-
formulas do not diminish its expressive power. In other words, any property of
timed state sequences that can be specified in £7 can already be specified in
TPTL.

The natural embedding F0 gives, for any TPTL-formula <j>, an equivalent
£r-formula Fo(4>), thus demonstrating that C-r is as expressive as TPTL. By
the following theorem, the converse is also true.

Theorem [Expressive completeness of TPTL]. For every formula <f> of
Cj, there exists a formula ip of TPTL such that M.T{4>) = M.T[I}>). m

Proof: Given an ^-formula <j>, we construct an equivalent TPTL-formula
ip in four steps. By the theorem on the regular nature of the time primitives
we obtain an ^-formula 4>', with additional time-difference predicates Tdifft

and time-congruence predicates Tcongt, such that Mj(^) = M(4>'). By the
expressive completeness of PTL, there is a PTL-formula <p" such that M(4>')
equals M{</>") ([GPSS80]).

We transform <f>" into an equivalent PTL-formula cj>'" such that every time-
difference proposition Tdifft is either not within the scope of any temporal
operator, or immediately preceded by a next operator. This can be done by
repeatedly rewriting subformulas of the form 0(<£i —* #2) and 4>\U$2, to
Oi — 0<t>2 and fa V (fa A (Oi)"(02)). respectively.

Define the constants d(<j>) and c(<f>) as in Section 2.3. From </>'" we arrive
at V by replacing every time-difference proposition Tdifft that is not within
the scope of a temporal operator by x. x = t (and x. x > t, if t — d(<f>)), every
subformula O Tdifft by x.Qy. y = x +1 (and x.Qy. y > x +1, if t = d(<j>)), and
every time-congruence proposition Tcongt by x.x =e(^>) t- ■

We conclude the discussion of properties expressible in TPTL by interpreting
the logic over pure ("timeless") state sequences, and investigating the expressive
power of the congruence relations.

3.2.1 Timeless expressiveness

With every TPTL-formula 4> we can associate a set of state sequences by pro-
jecting the timed state sequences in M.-r(4>). Given a state sequence a and a
TPTL-formula <f>, let a € A4g(</>) iff there is a time map r such that (CT,T) |= <f>.

Interpreted in this fashion, TPTL can specify strictly more properties of
state sequences than PTL. For example, the property even(p), that "p holds in
every even state," is not expressible in pure PTL ([Wo83]). In TPTL, we may

17

(ab)use time to identify the even states as precisely those in which the time does
not increase:

Oy. x - y A Dx.Qy. (x = y -> p A Qz. {z > y /\ O-" = *))•

The following theorem shows that the expressive power of TPTL with respect
to state sequences is that of the second-order language £2, or equivalently, u-
regular expressions.

Theorem [Timeless expressiveness of TPTL]. For every formula 4> of
TPTL, there is a formula ip of C2 such thai M^(<j>) = M.(ip), and vice versa, m

Proof: Given a TPTL-formula <f>, we know how to construct an equivalent
£;r-formula <j>'. By the theorem on the regular nature of the time primitives
we obtain an £-formula <f>", with additional time-difTerence predicates Tdifft

and time-congruence predicates Tcongt, such that M^.(tj>') — M(<f>"). The C2-
formula yj that binds all of the new time predicates in (j>" by an existential prefix
is easily seen to have the desired models.

In order to show the second implication, we use a normal-form theorem for
C2: given an £2-formula xp, there is an equivalent £2-formula V' of the form
3pi... 3pn. rp'M, whose matrix ip'M contains no second-order quantifiers ([BÜ62]).
We construct a TPTL-formula <f> that characterizes the models of ip', by using
the (existentially quantified) time map to encode the interpretation of the unary
predicates p:(1 < j < n), which are bound in rp'.

Assign to every subset Jt C {l,...n} a unique code t € TIME. By the
expressive completeness of PTL, M(ip'M) = M(V^) for some PTL-formula
^Af ([GPSS80]). From VAT, we obtain <f> by replacing every proposition p,,
1 < J < n> by z-Ol/- V>ej, y = x + t. It is straightforward to establish a one-
to-many correspondence between the models I — {cr,p[,.. .p£) of ip'M and the
timed state sequences (a, r) satisfying <j>: given I, let r(i + l) = r(i) +1 such
that Jt = {j | Pjii)}, and given r, let pj(i) iff j € JT{i+i)-T(i) (assume that
j £ Jt if t is no proper code). ■

It follows that £j, with the time function existentially quantified, has the
full expressive power of the second-order language C2. In fact, the proof given
above shows that equality and successor over the time sort are sufficient to
achieve this timeless expressiveness.

3.2.2 Expressive power of congruences

If we disallow the use of congruence relations in TPTL, the resulting logic is
strictly less expressive. Consider the following formula <j>:

Dx.{x=2 0 — p).

It characterizes the timed state sequences in which p is true at all even times.
We show that this property is not expressible without congruence relations.

18

Suppose that the TPTL-formula j), which does not contain any congruence
relations, were equivalent to <\>. Let c be the largest constant occurring in ij>. It
is easy to convince yourself that tp cannot distinguish between the timed state
sequences pj = (er, Xi. (c + 1)) and p2 = (a, Xi. (c + 2)), for any a. Yet if p is
continuously false in a, only one of p1 and p2 satisfies <j>.

Note that TPTL without congruence relations has the same expressive power
as the first-order language CT without congruences. However, as has been
pointed out in the previous subsection, the congruence primitives do not affect
the "timeless" expressiveness of these formalisms; for example, we have demon-
strated that the property that "p holds in every even state" (as opposed to every
state with an even time) can be specified without congruences.

3.3 Nonelementary extensions

We have seen that TPTL restricts CT to "temporal" quantification over the
state sort and no quantification over the time sort. Can we relax these re-
strictions without sacrificing elementary decidability? Arbitrary quantification
over the state sort encompasses full £ and is, therefore, clearly nonelementary.
In the following subsection, we study the generalization of TPTL that admits
quantification over the time sort, and show it to be nonelementary as well.

Then we try to add past temporal operators to TPTL, an extension that
does not affect the complexity of pure PTL. Therefore it is quite surprising
that the past operators render TPTL nonelementary.

3.3.1 TPTL with quantification over time

Several authors, such as [Os87] and [Ha88], have proposed to use first-order
temporal logic with a single dynamic (state) variable, T, that represents the
time in every state, for the specification of real-time properties. For instance,
they write our typical bounded response property <I>BR from above essentially as

OVz.(p A T-x — 0(g A T< z+l)),

using auxiliary rigid (global) variables like x to refer to the time (i.e., the value
of T) of different temporal contexts.

Eliminating the state variable T, we see that this notation corresponds to
TPTL extended by classical universal and existential first-order quantification
over time:

Oy. Vi.(pAj)=i -. Oz.(q A z <x+ 1)).

We call this generalization of TPTL, whose syntax definition is supplemented
by the new clause "If <f> is a formula and x € V, then 5x.<t> is also a formula,"
quantified TPTL or TPTLg. Given a timed state sequence p, an index i > 0,
and an environment £, the classical quantifiers are interpreted as usual:

(p,i) \=£ 3x.(f> iff (p,i) \=£[t/x] <t> for some t € TIME.

19

TPTLg seems, on the surface, more expressive than TPTL, because it can
state properties of times that are not associated with any state. But it is easy
to see that TPTL3 can still be embedded into CT (let Fi(3x.<f>) = 3x.Fx(<f>)).
The satisfiability of TPTLg is, therefore, decidable, and its expressive power,
measured as the sets of timed state sequences specifiable in the logic, is the same
as that of TPTL.

We show that TPTL3 is, however, not elementarily decidable. This provides
additional justification for our preference for TPTL over the existing notation
with first-order quantifiers over time: prohibiting quantification over time not
only leads, as argued in [AH89], to a more natural specification language, but is
necessary for the existence of feasible verification methods, such as the tableau
techniques for TPTL.

Theorem [Complexity of TPTL3]. The satisfiability problem of TPTL3

is nonelementary. m

Proof: We translate the nonelementary monadic first-order theory of (N, <)
([St74]) into TPTL3: by forcing the time to act as a state counter (using
Ox.Qy. y = x + 1), state quantifiers can be simulated by the time quantifiers of
TPTL3.

Given a formula 4> of £, we construct a formula i> of TPTL3 such that <f>
is satisfiable iff the conjunction of ^ and Dx.Qiy.y — x + 1 is satisfiable. The
formula ip is obtained from 4> by replacing every atomic subformula of ..:e form
p(i) by Ox. (p A x = i) (read the quantifiers of # as quantifiers over the time
sort). ■

3.3.2 TPTL with past

In [LPZ85], PTL is extended with the past temporal operators © (previous)
and 5 (since), the duals of O and U. These operators can be added at no extra
cost, and although they do not increase the expressive power of PTL, they allow
a more direct and convenient expression of certain properties.

Let TPTLp be the logic that results from TPTL by adding the following
clause to the inductive definition of formulas : "If #1 and fa are formulas, then
so are Qfa and fa S fa.n The meaning of the past operators is given by

• (P>0 Nf Q4> iff i = 0 or (p, t - 1) [=£• fa and

• (p, i) |=£ fa S fa iff (p, j) j=£ fa for some j < i and
(p, k) ^£ fa for all j < k < i.

Clearly, TPTL/> can still be embedded into CT:

• Fo(©fa = true, Ft+1(Qfa = Fi(fa

• Ft(faSfa) = 3j < i.(Fj(fa) A Vj < k < i.Fk(fa)).

20

Hence the satisfiability of this logic is, again, decidable, and its expressive power
is no greater than that of TPTL.

However, unlike in the case of PTL, there is a surprisingly heavy price to be
paid for adding the past operators.

Theorem [Complexity of TPTLP]. The satisfiability problem of TPTLp
15 nonelementary. m

Proof: Again, we are able to use the nonelementary nature of the monadic
first-order theory of (N, <). By adopting time as a state counter, we can simulate
true existential quantification over time by O, because<S> allows us to restore the
correct temporal context.

Given a formula cf> of £, we construct a formula ip of TPTLp such that $ is
satisfiable iff the conjunction of i> and Ox.Oy. y = x + 1 is satisfiable. The first
step in translating <j> is the same as in the proof of the nonelementary complexity
of TPTLg. In a second step we replace every subformula of the form 3z.<p by
y. (Oz.<3>2. (z = yAtp) V<S>i. Oz. (z = y A tp)). u

3.4 Timed ETL

PTL does not have the full expressive power of the second-order language £2;
recall that the property even(p), that "p is true in every even state,"

3q. [q{0) A Vi. (q{i) - p{i) A -.,(» + 1) A q(i + 2))],

is not expressible in PTL ([Wo83]). That is why Wolper has defined extended
temporal logic (ETL), which includes a temporal operator for every right-linear
grammar. ETL has the same expressiveness as £2, or equivalently, w-regular
expressions, and yet a singly exponential decision procedure.

The situation for TPTL is similar: there is no TPTL-formula whose models
are precisely the timed state sequences in which, independent of the time map,
p holds at every even state.

Suppose there were such a formula <j>; we show that this would imply the
expressibility of even(p) in £. First construct an ^-formula <f>' that is equivalent
to <j> and contains the additional time-difFerence and time-congruence predicates
Tdifft and Tcongt, as usual. Then replace, in 4>\ all occurrences of Tdifft and
Tcongt by true or false depending on whether t - 0. This simplification does
not affect the truth of the formula over interpretations all of whose times are
permanently 0. Thus, the resulting formula rp is satisfied by a state sequence a
iff (a, Xi. 0) € MT(4>); that is, iff p is true in every even state of a.

However, analogously to PTL, we are able to generalize TPTL to timed
extended temporal logic, TETL, by introducing temporal grammar operators.
TETL is shown to have the full expressive power of C.\, while being no more
expensive than TPTL.

21

3.4.1 Syntax and semantics

Given a set P of propositions symbols and a set V of variables, the terms of
TETL are the same as in TPTL. The formulas of TETL are inductively denned
as follows:

<f> '■= P I *i < ""2 I ""I. =d *2 I false | 4>i -* fa | Q{<t>l, . . . 4>m) I X. if)

where x £ V,p £ P, d>2, and £(ai,... a™) is a right-linear grammar with the
m terminal symbols a\,.. .am.5

As with TPTL, TETL-formulas are interpreted over timed state sequences.
Given a timed state sequence p, an index i > 0, and an environment £, the
semantics of the grammar operators is denned by the following clause:

(p, i) ^=£ G(<f>i, ■ ■ ■ 4>m) iff there is a (possibly infinite) word
w = avlttavllaW7... generated by Q(ax,...am) such that
(P, i + j) \=£ <t>wj for all j > 0.

All temporal operators of TPTL are expressible by the grammar operators of
TETL; for example, the TPTL-operator D corresponds to the grammar Qn{a)
with the only production Ga{a) —> aQa(a) (we identify grammars with their
starting nonterminal symbols). The formula even(p), which is not expressible
in TPTL, can be stated as Geven(true,p), for the production

^et)en(aii02) ~* ^lty Gtven{o>l, 0.2)-

3.4.2 Complexity

By putting together the tableau methods for ETL ([Wo83]) and TPTL ([AH89]),
we develop a doubly-exponential-time decision procedure for TETL. This pro-
cedure is near-optimal; we go on to show the satisfiability problem for TETL to
be EXPSPACE-complete.

Our presentation follows [AH89] closely.6 For the sake of keeping the presen-
tation simple, we assume that all grammar operators correspond to productions
of the form

a(ai,...aTO)— oj, \aiag'{ail,...ajJ.

Furthermore, all TETL-formulas contain a single free variable, T (which refers
to the initial time), and only timing assertions of the forms x < y + c, x + c <y,
and x =d y + c, for d > c > 0. This can be achieved by renaming of variables,
and easy simplifications.

5Like ETL, TETL can alternatively be defined using automata connectives for all Büchi-
automata, instead of grammar operators ([WVS83]).

6The careful reader may have noticed that we use, throughout, time-difference propositions
TdiSt that indicate the time increase t from the predecessor states, as opposed to [AH 89],
where these propositions represent the time difference to the successor states. This is nec-
essary, because we have relaxed the tnitiality condition T(0) = 0 on timed state sequences

22

As with TPTL, for checking the satisfiability of a given TETL-formula <j>,
we may restrict ourselves to timed state sequences p = (a, T) all of whose time
steps r(i + 1) — r(i), i > 0, are bounded by the product K of all constants
occurring in <j> (a constant c > 0 occurs in <p iff <t> contains a subformula of the
form x < y + (c — 1) or x + (c — 1) < y, or the predicate symbol =c). The time
information in p has, therefore, finite-state character; it can be modeled by the
new propositions Tdifft, 0 <t < K, representing the time differences t between
successive states.

This allows us to modify the tableau-based decision procedure for ETL
([Wo83]), to handle formulas with time references. It is, in fact, included in
our procedure as the special case in which <f> contains no timing constraints.

The key observation underlying all tableau methods for temporal logics is
that any formula can be split into two conditions: a present requirement on the
initial state and a future requirement on the rest of the model. For example,
the eventuality 0<f> can be satisfied by either <f> or Q04> being true in the initial
state.

In order to propagate the requirement on the successor state properly, all
timing constraints need to be updated to account for the time increase t from
the initial state to its successor. Consider the formula Q4>(T), an^ recall that
the free occurrences of T are references to the initial time. This condition is
true in the initial state iff the next state satisfies the updated formula 4>(T - t).

If the number of conditions generated in this way is finite, checking for satis-
fiability is reducible to checking for satisfiability in a finite structure, the initial
tableau. For t > 0, a naive replacement of T by T — t would, however, succes-
sively generate infinitely many new formulas. Fortunately, the monotonicity of
time can be exploited to keep the tableau finite; the observation that z is always
instantiated, in the "future," to a value greater than or equal to T, allows us
to simplify timing assertions of the form T < x + c and x + c < T to true and
false, respectively.

We define, therefore, the formula #' that results from updating all time
references T in <f>, inductively as follows: <f>° = 4>; and (/>t+1 is obtained from
ft by replacing all terms of the form T -f c (for c > 0) by T + (c - 1), and all
subformulas of the form T < x + c, x + c <T, and T =d 1 + c (for c > 0) by
true, false, and T =d x + ((c + 1) mod d), respectively.

Now let us collect all conditions that may arise by recursively splitting a
formula into its present and future parts. The closure Cl(<f>) of a TETL-formula
4> is the smallest set containing <f> that is closed under the following operation
Sub:

• Su6(V>i — ^2) = {V'i,V'2}

• Su6(OV0 = {1>t\0<t<K}

. Sttk(ff(^1,...^TO)) = {^l,^1,Off'(^ll...v»iJ>

23

• Sub(x.iP(x)) = {i>(T)}.

Let JV be the number of connectives, quantifiers, and grammar operators in <f>,
where every grammar operator is counted as the number of nonterminal symbols
in the corresponding grammar. By induction on the structure of <f>, it can be
shown that \Cl(<j>)\ <2NK.

Tableaux for TETL are finite, directed state graphs (Kripke structures) with
local and global consistency constraints on all states. The states are represented
by consistent sets of formulas that are closed under "subformulas," expressing
conditions on the current state and the successor states. Every state contains,
in addition, a proposition Tdifft, 0 < t < K, which denotes the time difference
to the predecessor states.

Formally, we define the states as the maximally consistent subsets of the
finite universe

Cl'((j>) = Cl(<j>) U { Tdifft | 0 < t < K}

of TETL-formulas. The set <$ C Cl~{<j>) is (maximally) consistent iff it satisfies
the following conditions (where all formulas range only over Cl" (</>)):

• Tdifft € # for precisely one t with 0 < t < K; this t G TIME is referred
to as Lastdiff($).

• false £ §.

• Vi —» V"2 € $ iff either Vi £ $ or i>2 £ $•

• G(ipi,... i>m) € $ iff either ^n G $, or both Vi3 € $ and

• x.\j){x) € $ ifFV(T) € #•

• T ~ T + c € § iff 0 ~ c holds in N (for ~ one of <, >, =a, or its negation).

Now we are ready to define the initial tableau in a way that ensures the
global consistency of both temporal and real-time constraints as well. The initial
tableau T{<j>) for the TETL-formula <f> is a directed graph whose vertices are the
consistent subsets of Cl"{<j>), and which contains an edge from $ to * iff, for all
O € Cl{4>),

Oi> € # iff VLa,tdtf(*) € *.

The significance of the (finite) initial tableau T(4>) for the formula 4> is that
every model of <j> corresponds to an infinite path through T(4>) along which
all eventualities are satisfied ("fulfillable") in time, and vice versa. An even-
tuality -<G{i>i,-- ■ V"m) is called fulfillable along the finite path oi-$t iff
either V,, £ $o, or k > 1 and ^Q'(i>n,...^.J*"*W(»>) is fulfillable along
$i#2 • •• $k- By combining the corresponding arguments for ETL and TPTL,
it can be shown that a TETL-formula <j> is satisfiable iff T{4>) contains an infinite

24

path $o#i$2 ••• such that <j> £ $0 and, for every i > 0, ^Q{il>lt.. .i/)m) £ 4>,
implies that -£(Vi, • • • i>m) is fulfillable along *,*l+1 ...*k for some k > i.

This result suggests a decision procedure for TETL: construct the initial
tableau, and employ the usual, polynomial techniques for checking whether the
tableau contains an infinite path along which all eventualities are satisfied. Since
the initial tableau contains 0(K ■ 2N'K) states, each of size O(N-K), T{4>) can
be constructed and checked for infinite paths in deterministic time exponential
mO(N-K).

Theorem [Deciding TETL]. The satisfiability of a TETL-formula <f> w
decidable in deterministic time exponential in O(N-K), where N is the number
of connectives, quantifiers, and grammar operators in <p, and K is the product
of all constants occurring in 4> (recall that every grammar operator is counted
as the number of nonterminal symbols in the corresponding grammar). ■

Note that the length L of a formula whose constants are represented in
binary, is 0(N + log K). So we have a decision procedure for TETL that is
doubly exponential in L (although only singly exponential in N, the "untimed"
part, and thus, singly exponential for ETL).

The algorithm outlined here may be improved along the lines of [Wo83] to
avoid the construction of the entire initial tableau. This does not, however, lower
the doubly exponential deterministic-time bound; in fact, TETL is EXPSPACE-
hard.

Theorem [Complexity of TETL]. The satisfiability problem of TETL is
EXPSPACE-compiete. ■

Proof: To show that TETL is in EXPSPACE, we follow the argument that
ETL is in PSPACE, which develops a nondeterministic version of the tableau
decision procedure and then applies Savitch's theorem ([Wo83]). EXPSPACE-
hardness follows immediately from the corresponding result for TPTL ([AH89]).

3.4.3 Expressiveness

Although TETL is no harder than TPTL, we have demonstrated that its expres-
siveness is strictly greater, by specifying the property even(p). The following
theorem characterizes the expressiveness of TETL as equivalent to the second-
order language L\.

Theorem [Expressiveness of TETL]. For every formula <t> of TETL,
*Aere exists a formula yj of L\ such thai MT{4>) = MT(i>), and vice versa, m '

Proof: We extend the translation F0 that embeds TPTL into CT to ac-
commodate the grammar operators of TETL; the target formulas will contain
second-order quantifiers over unary predicates, and thus belong to C\,.

Again, assume that all grammar operators correspond to productions of the
form

g(a1,...am)^ail \ CLX2G'{au,...aJn).

25

We add the following clause to the definition of Fk (k > 0):

Fk(go(4>l,...d>m)) = 3pg:...3pgu.(pg(k) A\/k'>k. /\ *£,(*'))
0<1<M

for some new unary predicate symbols Pgn,---Pg , where QO,---SM are all
the nonterminal symbols occurring in the grammar Go(&i, ■ ■ -<hn), and 4>g{k)
stands for the £|,-formula

Pg(k) - FtihJ v (Fk(4>ia) A pg.(k + l)).

Consider an arbitrary timed state sequence p. We show, by induction on the
structure of <f>, that (p, k) \=£ <f> iff (p, k) (=£ Fk{</>) for all k> 0 and environ-
ments £.

The crucial case that <f> has the form £o(#i, ••■4>m) is derived as follows.
To establish the existence of appropriate predicates pg (0 < / < M), let pg

be true in state k' > k iff (p, A') hf £1(^1. ■ ■ ■ &»)• On the other hand, given
the predicates pg^ satisfying 4>g (k') for all k' > k, we can construct a word
w = ow,]aWloW3... generated by g0{ai,...am) such that (p,k') \=£ <j>v,k,_k-

It follows that, for any TETL-formula <j>, the £^-formula F0{4>) is equivalent
to 4>- The argument for the expressive completeness of TETL with respect to C\
is analogous to the corresponding proof for TPTL and CT (use the expressive
completeness of ETL with respect to C2). ■

Let us complete the expressibility picture by a few remarks. The timeless
expressiveness of TETL is clearly again that of the second-order language £2,
and thus no more than that of TPTL. It is also immediate that the Congruence
relations contribute even to the expressive power of TETL (and £^,) in a non-
trivial way; the property that p is true at all even times is still not expressible
without congruence relations.

3.4.4 TPTL with quantification over propositions

There are several alternatives to the grammar operators of ETL. PTL can be
extended by fixed-point operators (obtaining a variant of the propositional p-
calculus of [Ko82]) or second-order quantification over propositions (QPTL of
[Si83]) in order to achieve the full expressive power of C2. While fixed-points
can be viewed as generalized grammar operators and yield to tableau methods,
QPTL is nonelementary.

It is straightforward to show that both extensions have, indeed, the ex-
pected, analogous effect in the TPTL-framework; they give decidable real-time
specification languages with the expressiveness of L\,. However, timed QPTL
is, as a superset of QPTL, nonelementary, and thus unsuitable as a verification
formalism.

26

4 Metric Temporal Logic: MTL

Several authors have tried to adapt temporal logic to reason about real-time
properties by interpreting its modalities as bounded operators. For example,
[Ko89] suggests the notation 0<c to express "eventually within time c." Similar
temporal operators that are subscripted with constant bounds are used in [Ha88]
and [EMSS89].

In this section, we extend PTL by such bounded temporal operators and
interpret the resulting logic over timed state sequences. For example, the typical
bounded response property that "Every p-state is followed by a g-state within
time 1" will be written as 0(p —» <0<! q).

It is easy to see that we have, in fact, only obtained a notational variant of
a subset of TPTL (rewrite every subformula 0<c 4> as x. Oy. (y < x + c A 4>)).

We show that this formalism is interesting, and worth studying in its own
right, for two reasons. First, and surprisingly, it is already as expressive as full
TPTL. And secondly, it may, unlike full TPTL, be enriched by past operators,
thus resulting in what we call (following [Ko89]) metric temporal logic (MTL),
without sacrificing its elementary decidability.

Hence we are able to conclude that MTL represents, again, a suitable spec-
ification and verification formalism: just like TPTL, MTL corresponds to an
expressively complete and yet elementary fragment of CT with a tableau-based
decision procedure. But the two subsets of £j corresponding to TPTL and
MTL, respectively, are not identical; either one of them can state certain prop-
erties more directly and succinctly than the other one, and may therefore be
preferred for some specifications.

4.1 Syntax and semantics

Given a set of propositions P, the formulas <f> of MTL are defined inductively
as follows :

4>:=p\ false | <j>x -+ fa | 0~<^ I Q~c<t> I 4>i U~c 4>2 I <t>i £-e 4>2

for p € P, ~ being one of <, =, >, or =d, and c > 0, d > 2. The defined
operators 0^e<t> and 0^.c 4> stand for trueU^c(f) and ->0^c ->4>, respectively;
other abbreviations include 0>c <f> (for 0=c <j> V 0>c 4>) and unbounded O (for
O>o).

The formulas of MTL are interpreted over timed state sequences. Instead of
giving MTL its own semantics, we translate any MTL-formula <j> into a TPTLp-
formula G(4>) (let ~ stand for <, >, or =):

• G(P) = P

• G(false) = false, G^ -. <t>2) = G{<f>l) — G(<f>2)

• G(0..c <t>) = x.Oy- (y - x + c A <t>), G{Q-iC <t>) = Qy. (y =d c A <p)

27

• G(G~c <S>) = x.Qy. (x ~ y + c A $), G(0HjC <j>) = Qy. {y =d c A <f>)

• G(<f>iU^c <j>2) = x.(<t>iUy.(y~~ x + c A <f>2))

• G((f>i U=iC <j>2) = 4>i U y. (y =d c A <j>2)

• G(<f>i S^c <j>2) = x. (fa S y. (x ~ y + c A <j>2))

• G(<f>i S=iC <f>2) = <t>1Sy.(y=dc A </>2).

Note that 0=3p holds in a state if p is true in some future state whose time is
3 greater than the current time. However, 0=3ip holds in a state if p is true
in some future state whose time is odd; the congruence subscripts refer to the
absolute times of states.

It follows that both TPTL and MTL are orthogonal fragments of TPTLj>
and, hence, C?: while TPTL prohibits past operators, MTL corresponds to a
subset of TPTLp wherein all timing constraints relate only variables that refer
to "adjacent" temporal contexts.

4.2 Complexity

We show that the satisfiability problem of MTL is much simpler than the corre-
sponding nonelementary problem of full TPTLp, by generalizing the standard
tableau-decision procedure for PTL ([BMP81]) to MTL.

The tableau algorithm for MTL uses the techniques developed for TPTL
in [AH89]. The crucial property that guarantees the finiteness of the tableau
being constructed is that, in both cases, the temporal precedence between any
two temporal contexts related by a timing constraint is uniquely determined.
Before giving a formal definition, we indicate first how the algorithm proceeds
for a sample input.

Suppose that the time increases by one unit from a state to its successor (in
general, the time increase between states can be bounded for any given formula,
and thus reduced to a finite number of different cases). In order to satisfy, say,
0<c 4> in the current state, we have to satisfy either <p now, or 0<c_i <j> in the
succeeding state. Continuing this splitting of requirements into a present and a
future part, we will eventually arrive at 0<i <j>, forcing (f> to be satisfied in the
current state.

Since every input formula rp generates only a finite number of requirements
on states in the described fashion, V is satisfiable iff it is satisfiable in a finite
tableau. By bounding the maximal size of this tableau, we obtain the following
result.

Theorem [Deciding MTL]. The satisfiability of an MTL-formula 4> can be
decided in deterministic time exponential in 0(C ■ N), where N is the number
of propositional and temporal connectives in 4>, and C — 1 is the largest constant
occurring, as a subscript, in 4>. m

28

Proof: Throughout, let ~ stand for <, >, or =. Define the closure Cl(<f>)
of the MTL-formula <f> to be the smallest set containing <j> that is closed under
the following operation Sub:

• Su6(y>i -»V2) = {^1.^2}

. sub(0^ci>) = m

. 5lli(^i U„c 1>3) = {i>l,lh, 0(V>1 W V-2)} U {0(^1 "~e- V-2) I 0 < C' < C]

• Sub(^ u=iC fa) = {Vl, V-2, CWi w=<e ifc)}

• SUfc(Vi S~c V2) = {V-i, V>2,0(V<i ^ V2)} U {©(V-i S~e< rh)' I 0 < c' < c}

• 5l»J(^i 5=JC V2) = {V>1, V-2,©^! S=dc i>2)}-

If C-1 is the largest constant occurring in <f>, and N is the number of connectives
(propositional and temporal) in <f>, then |C/(^)| < 2C-N.

As in TPTL, for checking the satisfiability of <j>, we may restrict ourselves
to timed state sequences p = (o",r) all of whose time steps r(i + 1) - r(i),
i > 0, are bounded by the product K of all constants occurring, as subscripts,
in 4> (count a subscript of the form =<j c as d). The time information in p
has, therefore, finite-state character; it can be modeled by the new propositions
Tdifft and Tcongt,, 0 < t < K and 0 < t' < K, representing, in any state, the
time difference t from the predecessor state and the remainder t' modulo K of
the current time. For ease of presentation we use, in addition, the propositions
Tdiff't, 0 < t < K, to represent the time difference t to the successor state.

Let Cl"((f>) denote the set obtained from Cl{<t>) by adding the new proposi-
tions Tdifft, Tdiff't, and Tcongt. A subset $ of Cl'(4>) is called (maximally)
consistent iff it satisfies the following conditions (where all formulas range only
over the finite set Cl"((f>)):

• Tdifft € * for exactly one t with 0<t<UC;thist€ TIME is referred to
as Lastdiff($).

• Tdifft € * for exactly one t with 0 < t < K; this t € TIME is referred to
as Nextdiff($).

• Tcongt € $ for exactly one t with 1 < t < K\ this t € TIME is referred
to as Congclass($).

• false £ $.

• V>i —* i>2 € * iff either Vi £ * or ^2 € $•

• i>iU=cT}>2 € $ iff either c = 0 and V>2 € $, or Vi € $, Nextdiff{$) < c,
and 0{i>iU=c-Ncztdiff(*)i>2) € #•

29

• Vi U<c V-2 G * iff c > 0, and either ^2 € $, or Vi € #, Nextdiff(§) < c,
and OCV'i^c-Afeitd.jfff*)^) € #.

• V>i ^>c V>2 € # iff V>i € $, and either Neztdiff($) < c and
0(i>iU>c-Nextdiff(*)ip2) G 4>, or Nextdiff($) > c and 0(^iWy>2) € $.

• ^\u=ici>2 € $ iff either Congclaas($) =d c and ^2 € $, or Vi G $ and

Similar conditions are put on the S-formulas in #, to ensure their consistency
with Lastdiff($).

The initial tableau T{<j>) for the MTL-formula <f> is a directed graph whose
vertices are the consistent subsets of Cl"{4>), and which contains an edge from
to * iff all of the following conditions are met:

• Neztdiff($) = LastdiffiV).

• Congclass(^) =K Congclass($) + Neztdiff($).

• For all CLc V> £ Cfo), CU 1> € # iff ifi G * and Neztdiff($) ~ c.

• For all 0=.c V> € CT(*), 0=<c V- € $ iff V € * and Congclass(V) =d c.

• For all ©^c V € Cl(<t>), Q^c i> G * iff V € * and Neztdiff($) ~ c.

• For all 0SiC V € Cl{<f>), 0g-e V- € * iff V € $ and Con^cia55($) =d c.

It follows that an MTL-formula 4> is satisfiable iff the initial tableau T(<f>) con-
tains an infinite path $ = #0*1*2 • • • such that

• <t> e $0,

• $0 contains no ©-formula,

• for all i > 0, i)iU^cri>2 G #, implies rp2 G #> for some j > i with
Ei<*<>JVeztdjif ($t) ~ c, and

• for all i > 0, i\)XU=lCi>2 G $i implies V2 G $> for some j > i with
Congclo3s($j) =d c.

The proof is similar to the corresponding argument for TPTL ([AH89]).
Since the initial tableau contains 0(K ■ 2C'N) states, each of size O(C-N),

T(<f>) can be constructed and checked for infinite paths in deterministic time
exponential in 0(C-N). m

Note that although the (worst-case) running time of the tableau algorithm
is slightly faster for MTL than for TPTL (for which the product of all constants
appears in the exponent), it is still doubly exponential in the length of the input
formula. In fact, both formalisms are EXPSPACE-complete.

30

Theorem [Complexity of MTL]. The satisfiability problem for MTL M
EXPSPACE-complete. m

Proof: From a nondeterministic version of the tableau algorithm, it follows
that MTL is in EXPSPACE. The corresponding lower bound can be shown
similarly to the analogous result for TPTL, by simulating EXPSPACE-bounded
Turing machines ([AH89]). ■

4.3 Expressiveness

Because of the past operators, MTL can express certain properties more suc-
cinctly than TPTL. On the other hand, consider the following TPTL-formula
("Every p-state is followed by a g-state and, later, an r-state within time 5"):

Ox. [p — 0(q A Oy. (r A y < x + 5))].

This property has no natural expression in MTL. However, because of the
discrete nature of the underlying time domain, it can be translated into MTL
as follows:

5

°(J>- V°«(« A0<5-er)).
e=0

In fact, we show that the expressiveness of MTL is no less than that of
TPTL in any crucial way. Only properties that put constraints on the time of
the initial state, such as "The time of the initial state is 2" (x = 2 in TPTL) are
are not expressible in our version of MTL. It can be argued that for the purpose
of the analysis of real-time systems, the absolute time of the initial state is of
no importance.

Let us call a timed state sequence (a, r) initial, if the time of its initial state
is 0; that is, r(0) = 0. The following theorem states that if expressiveness is
measured by the sets of initial models definable in a real-time logic, then MTL
has the same expressive power as £T, or equivalently, TPTL.

Theorem [Expressive completeness of MTL]. For every formula <t> of
CT, there exists a formula V> of MTL (without past operators) such that p \= 4>
iffp\=yj for every initial timed state sequence p. m

Proof: As in the proof of the expressive completeness of TPTL given a
formula 4> of CT, construct a PTL-formula <j>' with additional time-difference
propositions Tdifft, 0<t< <*(*), and time-congruence propositions Tcong,,

°-J.J < CW' SUch that MTW = MWY Furthermore, in tf all propositions
Tdifft and Tcongt are either not within the scope of any temporal operator, or
immediately preceded by a next operator.

From <t>' we obtain the desired formula i, by eliminating the time-difference
and time-congruence propositions as follows. Since we consider only initial
models, replace each Tdxfft and Tcongt that is not within the scope of any
temporal operator by true or false, depending on whether t = 0. Then replace

31

OTdifft (for 0 < t < d{4>)) by Q=t true, OTdiffd{4>) by <3>dW true, and
QTcongt by 0=c(#)t

true- (Observe that only the nezi operator needs to be
subscripted.) ■

5 Discussion

We have shown that only a very weak arithmetic over a discrete domain of time
can be combined with PTL to obtain decidable real-time logics. We have then
identified two ways of constraining the syntax further, to find elementary real-
time extensions of PTL with the full expressive power of the underlying classical
theory of timed state sequences.

Thus, TPTL and MTL occupy a position among real-time logics that is
as appealing as the standing of PTL for qualitative reasoning. However, both
TPTL and MTL have EXPSPACE-complete satisfiability problems. Our deci-
sion algorithms are of a time complexity doubly exponential in the length of the
timing constraints (though only singly exponential in the number of temporal
and logical operators). On the other hand, PTL is PSPACE-complete, and has
a singly exponential decision procedure. We claim that this is because reasoning
in CT is intrinsically expensive.

A closer look at our proof of the EXPSPACE-hardness of TPTL ([AH89])
suggests that any extension of PTL that allows the expression of timing con-
straints of the form "The time of one state is within a certain (constant) distance
from the time of another state," using binary encoding for the time constants, is
EXPSPACE-hard. Even the identification of next-time with next-state (time as
a state counter) is of no help in complexity; introducing the abbreviation O* for
a sequence of k successive next operators makes PTL EXPSPACE-hard! Thus
the price of an extra exponential is caused by the succinctness of the notation
introduced by the binary encoding of the constants.

Acknowledgements. We thank Zohar Manna for his guidance, and David Dill
and Amir Pnueli for helpful discussions.

References

[AD90] R. Alur, D.L. Dill, "Model-checking for real-time systems," 5th IEEE
LICS, 1990.

[AH89] R. Alur, T.A. Henzinger, "A really temporal logic," 30th IEEE FOCS,
1989.

[BMP81] M. Ben-Ari, Z. Manna, A. Pnueli, "The temporal logic of branching
time," 8th ACM POPL, 1981.

32

[Bu62] J.R. Büchi, "On a decision method in restricted second-order arith-
metic," Proc. Internat. Congr. Logic, Methodology, and Philosophy of
Science 1960, Stanford Univ. Press, 1962.

[EMSS89] E.A. Emerson, A.K. Mok, A.P. Sistla, J. Srinivasan, "Quantitative
temporal reasoning," presented at the Workshop on Finite-State Con-
currency, Grenoble, France, 1989.

[GPSS80] D. Gabbay, A. Pnueli, S. Shelah, J. Stavi, "On the temporal analysis
of fairness," 7th ACM POPL, 1980.

[Ha88] E. Harel, Temporal Analysis of Real-time Systems, M.S. Thesis, Weiz-
mann Institute, 1988.

[HLP90] E. Harel, O. Lichtenstein, A. Pnueli, "Explicit-clock temporal logic "
5th IEEE LICS, 1990.

[HPS83] D. Harel, A. Pnueli, J. Stavi, "Propositional dynamic logic of regular
programs," J. Computer and System Sciences 26, 1983.

[JM86] F. Jahanian, A.K. Mok, "Safety analysis of timing properties in real-
time systems," IEEE Trans, on Software Engineering SE-12, 1986.

[Ka68] H.W. Kamp, Tense Logic and the Theory of Linear Order, Ph.D. The-
sis, UCLA, 1968.

[Ko82] D. Kozen, "Results on the propositional /x-calculus," 9th EATCS
ICALP, 1982.

[Ko89] R. Koymans, Specifying Message Passing and Time-critical Systems
with Temporal Logic, Ph.D. Thesis, Eindhoven Univ. of Tech., 1989.

[Le90] H. Lewis, "A logic of concrete time intervals," 5th IEEE LICS, 1990.

[LP84] O. Lichtenstein, A. Pnueli, "Checking that finite-state concurrent pro-
grams satisfy their linear specification," 11th ACM POPL, 1984.

[LPZ85] O. Lichtenstein, A. Pnueli, L. Zuck, "The glory of the past," Conf. on
Logics of Programs, Springer LJVCS 193, 1985.

[Mc66] R. McNaughton, "Testing and generating infinite sequences by a finite
automaton," Information and Control 9, 1966.

[MP89] Z. Manna, A. Pnueli, "The anchored version of the temporal frame-
work," Linear Time, Branching Time, and Partial Order in Logics
and Models for Concurrency (J.W. deBakker, W.P. deRoever, and G.
Rosenberg, eds.), Springer LNCS 854, 1989.

[OL82] S. Owicki, L. Lamport, "Proving liveness properties of concurrent pro-
grams," ACM TOPLAS 4, 1982.

[Os87] J.S. Ostroff, Temporal Logic of Real-time Systems, Ph.D. Thesis, Univ.
of Toronto, 1987. (Also Research Studies Press, 1990.)

[Pn77] A. Pnueli, "The temporal logic of programs," 18th IEEE FOCS, 1977.

33

[Si83] A.P. Sistla, Theoretical Issues in the Design and Verification of Dis-
tributed Systems, Ph.D. Thesis, Harvard Univ., 1983.

[SC85] A.P. Sistla, E.M. Clarke, "The complexity of proposition^ linear tem-
poral logics," JACM 32, 1985.

[St74] L.J. Stockmeyer, The Complexity of Decision Problems in Automata
Theory and Logic, Ph.D. Thesis, MIT, 1974.

[Th81] W. Thomas, "A combinatorial approach to the theory of w-automata,"
Information and Controi 48, 1981.

[Wo83] P. Wolper, "Temporal logic can be more expressive," Information and
Control 56, 1983.

[WVS83] P. Wolper, M.Y. Vardi, A.P. Sistla, "Reasoning about infinite com-
putation paths," 24th IEEE FOCS, 1983.

34

73
u
5-

«2

5-
O
5-
5-

c
es

T3

• P*

U

>s

ft u

o
&

o —

£*

c<

£ c
eg

Z o

•-s

in U ... ^2

© o

5 °
OX'S

• B o
«^

c ^

-8 s

00 fl

Reproduced by NTIS
National Technical Information Service
U.S. Department of Commerce
Springfield, VA 22161

This report was printed specifically for your
order from our collection of more than 2 million
technical reports.

For economy and efficiency, NTIS does not maintain stock of its vast
collection of technical reports. Rather, most documents are printed for
each order. Your copy is the best possible reproduction available from
our master archive. If you have any questions concerning this document
or any order you placed with NTIS, please call our Customer Services
Department at (703) 387-4660.

Always think of NTIS when you want:
• Access to the technical, scientific, and engineering results generated
by the ongoing multibillion dollar R&D program of the U.S. Government.
• R&D results from Japan, West Germany, Great Britain, and some 20
other countries, most of it reported in English.

NTIS also operates two centers that can provide you with valuable
information:
• The Federal Computer Products Center - offers software and
datafiles produced by Federal agencies.
• The Center for the Utilization of Federal Technology - gives you
access to the best of Federal technologies and laboratory resources.

For more information about NTIS, send for our FREE NTIS Products
and Services Catalog which describes how you can access this U.S. and

foreign Government technology. Call (703) 487-4650 or send this
sheet to NTIS, U.S. Department of Commerce, Springfield, VA 22161.
Ask for catalog, PR-827.

Name
Address

Telephone,

Your Source to U.S. and Foreign Government
Research and Technology

***rta&

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Technical Information Service
Springfield, VA 22161 (703) 487-4650

